Example: Optimal Power Flow
function parse_ac_power_data(filename)
data = PowerModels.parse_file(filename)
PowerModels.standardize_cost_terms!(data, order = 2)
PowerModels.calc_thermal_limits!(data)
ref = PowerModels.build_ref(data)[:it][:pm][:nw][0]
arcdict = Dict(a => k for (k, a) in enumerate(ref[:arcs]))
busdict = Dict(k => i for (i, (k, v)) in enumerate(ref[:bus]))
gendict = Dict(k => i for (i, (k, v)) in enumerate(ref[:gen]))
branchdict = Dict(k => i for (i, (k, v)) in enumerate(ref[:branch]))
return (
bus = [
begin
bus_loads = [ref[:load][l] for l in ref[:bus_loads][k]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][k]]
pd = sum(load["pd"] for load in bus_loads; init = 0.0)
gs = sum(shunt["gs"] for shunt in bus_shunts; init = 0.0)
qd = sum(load["qd"] for load in bus_loads; init = 0.0)
bs = sum(shunt["bs"] for shunt in bus_shunts; init = 0.0)
(i = busdict[k], pd = pd, gs = gs, qd = qd, bs = bs)
end for (k, v) in ref[:bus]
],
gen = [
(
i = gendict[k],
cost1 = v["cost"][1],
cost2 = v["cost"][2],
cost3 = v["cost"][3],
bus = busdict[v["gen_bus"]],
) for (k, v) in ref[:gen]
],
arc = [
(i = k, rate_a = ref[:branch][l]["rate_a"], bus = busdict[i]) for
(k, (l, i, j)) in enumerate(ref[:arcs])
],
branch = [
begin
f_idx = arcdict[i, branch["f_bus"], branch["t_bus"]]
t_idx = arcdict[i, branch["t_bus"], branch["f_bus"]]
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
ttm = tr^2 + ti^2
g_fr = branch["g_fr"]
b_fr = branch["b_fr"]
g_to = branch["g_to"]
b_to = branch["b_to"]
c1 = (-g * tr - b * ti) / ttm
c2 = (-b * tr + g * ti) / ttm
c3 = (-g * tr + b * ti) / ttm
c4 = (-b * tr - g * ti) / ttm
c5 = (g + g_fr) / ttm
c6 = (b + b_fr) / ttm
c7 = (g + g_to)
c8 = (b + b_to)
(
i = branchdict[i],
j = 1,
f_idx = f_idx,
t_idx = t_idx,
f_bus = busdict[branch["f_bus"]],
t_bus = busdict[branch["t_bus"]],
c1 = c1,
c2 = c2,
c3 = c3,
c4 = c4,
c5 = c5,
c6 = c6,
c7 = c7,
c8 = c8,
rate_a_sq = branch["rate_a"]^2,
)
end for (i, branch) in ref[:branch]
],
ref_buses = [busdict[i] for (i, k) in ref[:ref_buses]],
vmax = [v["vmax"] for (k, v) in ref[:bus]],
vmin = [v["vmin"] for (k, v) in ref[:bus]],
pmax = [v["pmax"] for (k, v) in ref[:gen]],
pmin = [v["pmin"] for (k, v) in ref[:gen]],
qmax = [v["qmax"] for (k, v) in ref[:gen]],
qmin = [v["qmin"] for (k, v) in ref[:gen]],
rate_a = [ref[:branch][l]["rate_a"] for (k, (l, i, j)) in enumerate(ref[:arcs])],
angmax = [b["angmax"] for (i, b) in ref[:branch]],
angmin = [b["angmin"] for (i, b) in ref[:branch]],
)
end
convert_data(data::N, backend) where {names,N<:NamedTuple{names}} =
NamedTuple{names}(ExaModels.convert_array(d, backend) for d in data)
parse_ac_power_data(filename, backend) =
convert_data(parse_ac_power_data(filename), backend)
function ac_power_model(filename; backend = nothing, T = Float64)
data = parse_ac_power_data(filename, backend)
w = ExaCore(T; backend = backend)
va = variable(w, length(data.bus);)
vm = variable(
w,
length(data.bus);
start = fill!(similar(data.bus, Float64), 1.0),
lvar = data.vmin,
uvar = data.vmax,
)
pg = variable(w, length(data.gen); lvar = data.pmin, uvar = data.pmax)
qg = variable(w, length(data.gen); lvar = data.qmin, uvar = data.qmax)
p = variable(w, length(data.arc); lvar = -data.rate_a, uvar = data.rate_a)
q = variable(w, length(data.arc); lvar = -data.rate_a, uvar = data.rate_a)
o = objective(w, g.cost1 * pg[g.i]^2 + g.cost2 * pg[g.i] + g.cost3 for g in data.gen)
c1 = constraint(w, va[i] for i in data.ref_buses)
c2 = constraint(
w,
p[b.f_idx] - b.c5 * vm[b.f_bus]^2 -
b.c3 * (vm[b.f_bus] * vm[b.t_bus] * cos(va[b.f_bus] - va[b.t_bus])) -
b.c4 * (vm[b.f_bus] * vm[b.t_bus] * sin(va[b.f_bus] - va[b.t_bus])) for
b in data.branch
)
c3 = constraint(
w,
q[b.f_idx] +
b.c6 * vm[b.f_bus]^2 +
b.c4 * (vm[b.f_bus] * vm[b.t_bus] * cos(va[b.f_bus] - va[b.t_bus])) -
b.c3 * (vm[b.f_bus] * vm[b.t_bus] * sin(va[b.f_bus] - va[b.t_bus])) for
b in data.branch
)
c4 = constraint(
w,
p[b.t_idx] - b.c7 * vm[b.t_bus]^2 -
b.c1 * (vm[b.t_bus] * vm[b.f_bus] * cos(va[b.t_bus] - va[b.f_bus])) -
b.c2 * (vm[b.t_bus] * vm[b.f_bus] * sin(va[b.t_bus] - va[b.f_bus])) for
b in data.branch
)
c5 = constraint(
w,
q[b.t_idx] +
b.c8 * vm[b.t_bus]^2 +
b.c2 * (vm[b.t_bus] * vm[b.f_bus] * cos(va[b.t_bus] - va[b.f_bus])) -
b.c1 * (vm[b.t_bus] * vm[b.f_bus] * sin(va[b.t_bus] - va[b.f_bus])) for
b in data.branch
)
c6 = constraint(
w,
va[b.f_bus] - va[b.t_bus] for b in data.branch;
lcon = data.angmin,
ucon = data.angmax,
)
c7 = constraint(
w,
p[b.f_idx]^2 + q[b.f_idx]^2 - b.rate_a_sq for b in data.branch;
lcon = fill!(similar(data.branch, Float64, length(data.branch)), -Inf),
)
c8 = constraint(
w,
p[b.t_idx]^2 + q[b.t_idx]^2 - b.rate_a_sq for b in data.branch;
lcon = fill!(similar(data.branch, Float64, length(data.branch)), -Inf),
)
c9 = constraint(w, b.pd + b.gs * vm[b.i]^2 for b in data.bus)
c10 = constraint(w, b.qd - b.bs * vm[b.i]^2 for b in data.bus)
c11 = constraint!(w, c9, a.bus => p[a.i] for a in data.arc)
c12 = constraint!(w, c10, a.bus => q[a.i] for a in data.arc)
c13 = constraint!(w, c9, g.bus => -pg[g.i] for g in data.gen)
c14 = constraint!(w, c10, g.bus => -qg[g.i] for g in data.gen)
return ExaModel(w)
end
ac_power_model (generic function with 1 method)
We first download the case file.
using Downloads
case = tempname() * ".m"
Downloads.download(
"https://raw.githubusercontent.com/power-grid-lib/pglib-opf/dc6be4b2f85ca0e776952ec22cbd4c22396ea5a3/pglib_opf_case3_lmbd.m",
case,
)
"/tmp/jl_8ZCtEvSfsr.m"
Then, we can model/sovle the problem.
using PowerModels, ExaModels, NLPModelsIpopt
m = ac_power_model(case)
ipopt(m)
"Execution stats: first-order stationary"
This page was generated using Literate.jl.